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Abstract—We propose a resource-efficient Bayesian Optimiza-
tion (BO) formulation that can provide the same convergence
guarantees as traditional BO, while ensuring that the opti-
mization makes efficient use of the available cloud or high-
performance computing (HPC) resources. The paper is motivated
by the fact that for many optimization problems that lend
themselves well to BO, like hyper-parameter optimization for
training large machine learning models, the single function
evaluation cost depends on the model parameters as well as
system parameters. The proposed Resource Efficient Bayesian
Optimization (REBO) algorithm is a novel formulation that
exploits this dependence and provides significant cost benefits
for users who want to deploy BO on cloud and HPC resources
that are characterized by availability of compute resources with
varying costs and expected performance benefits. We demonstrate
the effectiveness of REBO, in terms of convergence and resource-
efficiency, on a variety of machine learning hyper-parameter
optimization applications.

Index Terms—Bayesian optimization, Resource-efficient op-
timization, Expected Improvement, Gaussian processes, active
learning

I. INTRODUCTION

Bayesian optimization (BO) [6] is a class of machine-
learning based optimization methods that are well-suited for
complex “black-box” objective functions of the form f(x) :
X → R over a set X ⊂ Rd, that lack the analytical form
and gradients needed by first- and second-order derivative-
based methods. A typical BO strategy is to approximate the
true objective function using a surrogate function, represented
using a Bayesian machine learning technique – Gaussian
process regression (GPR) [5]. The GPR formulation allows
BO to quantify the uncertainty in the surrogate at different
candidate input points, and use the uncertainty to guide the
search for next best candidate to sample for evaluation. BO
has been shown to be effective for optimization over con-
tinuous domains of fewer than 20 dimensions (d ≤ 20), by
being sample efficient, i.e., taking fewer sample evaluations to
converge than competing methods.

Ability to work with black box objective functions has made
BO a highly versatile method in scenarios where a single
evaluation of the target objective function can take several
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hours to evaluate. This includes applications such as hyper-
parameter optimization for training large machine learning
models [10], [21], [22], optimal parameter estimation for
materials simulations [25], [27], drug design [17], etc. In each
of these scenarios, the function evaluation is typically very
costly, e.g, training a deep neural network model, running a
computer simulation of a physical process, etc.

For many optimization problems, the evaluation cost varies
across the search space, i.e., the evaluation is computationally
more expensive for some values of x and cheaper for oth-
ers [13]. For example, when training a deep neural network,
the training cost depends on the value of the hyper-parameters,
say, the number of layers of the network. Recent works have
shown that by exploiting the heterogeneity in the computa-
tional cost profile, one can converge to the optimal solution
while reducing the computational cost instead of the number of
evaluations; being cost-efficient instead of sample-efficient [7],
[13], [22], which is more desirable from the cost perspective.

However, above solutions that advocate cost-efficient BO,
assume that the function evaluation is done on a single static
compute environment. This is often not the case when the
evaluation is done using a cloud or cluster computing platform.
Such platforms typically offer different types of computing
nodes with different compute characteristics (number of cores,
availability of accelerators such as GPU(s), memory, etc.).
The application that is used for the function evaluation might
support parallel processing, and thus the user might also have
the option of choosing the number of compute nodes for
executing the application.

In this paper, we present a methodology to run BO on such
systems where the user has the ability to choose different types
of compute configurations at every iteration of BO, with an
objective to converging to the solution while reducing the cost
associated with using the system1. Clearly, simply choosing
the cheapest or the most expensive configuration or a random
configuration is not the best approach. For instance, while the
cheapest configuration might have a lower per-hour cost, the
evaluation might take longer and thus the actual dollar value
for that evaluation might be higher. The application running
the evaluation function itself could run faster or slower, for the

1By cost, we refer to dollar amount spent to run the evaluations. All
commercial cloud providers as well as many high-performance computing
(HPC) centers that offer cluster computing have per-hour pricing models that
depends on the system configuration [2], [3], [18].



same x, depending on the system configuration. For instance,
a neural network training application might run faster if the
compute node has a GPU or larger memory.

In general, we model the cost incurred for a single evalua-
tion of f(x) as:

c(x,θ) = u(θ)× t(x,θ) (1)

where the vector θ represents the system configuration pa-
rameters, the function u(θ) models the per-unit-time price
of acquiring the configuration θ, and the function t(x,θ)
models the time taken to run the function evaluation at x using
the configuration θ. Note that while u(θ) (pricing model) is
typically known, the time function t(x,θ) is not known a
priori.

Using the above cost formulation, we present a novel BO
algorithm called Resource Efficient Bayesian Optimization
or REBO, which identifies the optimal configuration (θ) to
execute the next function evaluation at every step of the
primary BO algorithm. REBO does not modify the primary
BO algorithm (thus guarantees same convergence as BO2),
but ensures that overall execution incurs lower cost. The time-
cost function t() is modeled using a second GPR model which
iteratively admits more data after every BO evaluation and
approximates the true but unknown function.

In this paper, we make the following contributions:
1) We advocate a resource-effective formulation of BO

which offers a more practical approach to reducing
running costs when deploying BO applications in cloud
and HPC environments.

2) We propose REBO, which is a novel approach that can
be used to deploy a BO application on a cloud system
in the most cost-effective manner.

3) We demonstrate the effectiveness of REBO, using ex-
periments for a variety of machine learning training
applications, including neural network hyper-parameter
tuning.

The rest of the paper is organized as follows. We provide
an overview of BO and discuss relevant related works in
Section II. The proposed REBO algorithm is presented in Sec-
tion III. We provide an empirical evaluation and comparison
with other related methods in Section IV and conclusions are
provided in Section V.

II. BACKGROUND AND RELATED WORK

A. Bayesian Optimization

Bayesian Optimization (BO) is a sequential method used for
optimizing expensive-to-evaluate black-box functions. Given
an objective function f : X → R our goal is to find x∗ such
that f(x∗) ≤ f(x),∀x ∈ X where X ∈ Rd and is referred to
as the search space.

BO models the objective function f by iteratively training
a probabilistic surrogate model. Typically this surrogate is

2This is not true of other cost-efficient methods [7], [13], [22] which modify
the core search strategy of BO and do not provide similar guarantees about
convergence.

built using a Gaussian Process (GP). Given n observations,
{xi ∈ X}ni=1, GP builds an n dimensional multivariate
Gaussian Distribution GPf (µ(x), k(x,x

′)) where µ : X → R
is the mean function and k : X × X → R is the covariance
function. The ability of a GP to estimate a function is greatly
determined by what covariance function is used. A covariance
function represents the prior knowledge we have about the
objective function. A popular choice is the squared exponential
kernel

kSE = σ2
s exp

(
−∥x− x′∥2

2l2

)
(2)

where variance σ2
s , and length-scale l are kernel hyper-

parameters that determine how the function values vary from
their original mean and how smooth the function is respec-
tively.

Once n evaluations of the objective function have been
completed, {xi, yi}ni=1 where xi ∈ X and yi = f(xi)+ϵi and
ϵi ∼ N (0, σ2

ϵ ) is the input noise, the posterior distribution of
the GP is given by f(x) | {x1:n, yi:n} ∼ N (µn(x), σ

2
n(x))

where µn(x) is the mean and σ2
n(x) is the covariance at the

current iteration and is defined as:

µn(x) = KT
∗ [K + σ2I]−1y (3)

σ2
n(x) = KT

∗∗ −KT
∗ [K + σ2I]−1K∗ (4)

where y is an array of observed function evaluations
(yi . . . yn), K is a covariance matrix between all observed
points, K∗ is the covariance between all observed points and
new points, K∗∗ is the covariance matrix between all new
points, I is an identity matrix of dimensions same as that of K
and σϵ is the observed noise in the evaluation of the objective
function.

An acquisition function, α : X → R uses the mean µn

and variance σn of the GP posterior to sample the next
candidate points on which the objective function, f should
be evaluated. The function’s goal is to find x′ ∈ X such that
α(x′) > α(x)∀x ∈ X . A popular choice for α is the Expected
Improvement(EI) [14] function which is defined as:

xn+1 = argmax
x∈X

(E(max{0, (µ(x)− f(x̃)} | {x1:n, y1:n})))
(5)

As the name suggests, EI computes the expected value
of improvement over the current best evaluation over f at
any point x ∈ X . Other well known acquisitions include
Probability of Improvement (PI) [9], Upper Confidence Bound
(UCB) [24] and Entropy Search (ES) [8]. Most modifications
of BO that have been proposed in the past that make BO cost-
efficient propose a modification to the EI acquisition function
such that the cost of evaluation of the candidate points is also
taken into consideration. We discuss these methods in detail
in the following subsection.

B. Cost Efficient Bayesian Optimization

Many cost-efficient BO algorithms extend the traditional BO
framework by incorporating evaluation costs. These methods



develop EI based acquisition strategies that balance the trade-
off between maximizing expected improvement and minimiz-
ing exploration cost. We explore three such popular acquisition
function in this section.

One common approach to incorporate cost-efficiency into
BO is to replace the EI acquisition function with the Expected
Improvement per unit time (EIpu) acquisition function [23]:

EIpu(x) =
EI(x)

m(x)
(6)

where m(x) is the predicted cost, typically modeled using
a Warped GP fitted on the log-cost [23]. This approach favors
points with high expected improvement and low predicted
evaluation cost. However, [12] showed that EIpu fails to
outperform EI in optimization problems where the optimum
lies in a high-cost region. The acquisition function struggles
to differentiate between high-cost regions with high expected
improvement and low-cost regions with low expected improve-
ment, as both yield similar EIpu values.

Eric et al. [12] proposed a cost-cooling modification to EIpu
where the predicted cost used to normalize the EI is now
exponentiated by a decaying function β.

EI − cool(x) =
EI(x)

m(x)β
(7)

where β assumes the value of 1 at the beginning of the opti-
mization and decays to 0 as the optimization progresses and
the allocated cost budget slowly diminishes. In the beginning,
EI-cool behaves similar to the original EIpu, favoring points
with high expected improvement and low predicted cost, but as
the optimization progresses, the predicted cost term becomes
less influential eventually transforming the function into EI.

Guinet et al. [7] attempts to make BO cost-efficient by
formulating the acquisition of new points as a bi-objective
optimization problem. The optimal points are present on a
pareto frontier where an optimal trade off between expected
improvement and cost of evaluation is achieved. The Con-
textual Expected Improvement (CEI) acquisition function is
defined as:

CEIλ(x) =

{
−c(x) EI(x) ≥ (1− λ)maxz∈χ(EI(z))

− inf otherwise
(8)

Our experimental results, presented in Table I, reveal that
both cost-cooling and pareto-efficient strategies demonstrate a
lack of flexibility across diverse search spaces. Moreover while
these strategies improve cost-efficiency to some extent by
improving the candidate acquisition process, they still operate
under the assumption that the entire optimization is performed
on a static system configuration. This assumption leaves a
significant portion of the cost optimization potential untapped.

III. PROPOSED RESOURCE-EFFICIENT BAYESIAN
OPTIMIZATION ALGORITHM

Our work attempts to address the following problem: Given
some objective function f , how can we use BO to optimize

f in the minimum cost possible without compromising on the
quality of optimization.

This problem is inherently challenging due to the intrinsic
trade-off present in BO between selecting candidate points
that facilitate faster convergence and those that incur the
least evaluation cost. Previous solutions have attempted to
resolve this dilemma by striking a balance between these two
competing objectives.

However, a key observation is that these existing solutions
operate under the assumption of system agnosticism, wherein
each iteration of the BO is evaluated on the same system
configuration, limiting the potential for cost savings.

In our work, we propose a novel framework, termed Re-
source Efficient Bayesian Optimization(REBO), which aims to
drastically reduce the cost of optimization without sacrificing
the quality of the optimization process. This is achieved
by leveraging an auxiliary cost model, we call Resource
Cost Model and the ability to dynamically adjust the system
configuration across BO iterations.

REBO deviates from the traditional approach of striking a
balance between selecting points that accelerate convergence
and those that incur lower evaluation costs. Instead, it employs
a greedy strategy that decouples the acquisition process into
two distinct stages.

In the initial stage, the algorithm identifies a subset of points
that offer the highest expected improvement, by maximizing
the αEI acquisition function. This stage is solely focused
on exploiting regions within the search space that exhibit
the greatest potential for improvement, effectively prioritizing
the exploration of promising areas without considering the
associated evaluation costs.

Subsequently, in the second stage, the algorithm shifts its
focus to minimizing the evaluation costs. From the previ-
ously identified subset of points with the highest expected
improvement, the algorithm selects the system configurations
that would incur the least cost for evaluating the objective
function. This resource-efficient selection process is driven by
the Resource Cost Model (γ), which estimates the dollar cost
associated with evaluating f , for each set of model and system
parameters.

A. Resource Cost Model

The Resource Cost Model (RCM), denoted as γ, is a
Bayesian model that predicts the probability distribution of the
cost associated with evaluating the objective function f for a
given set of model parameters (x) and system parameters (θ).
This model is defined as a product of the time cost model γt
represented by a Gaussian Process Regression (GPR), which
is iteratively trained as new points are evaluated by BO and a
unit-time cost function γc which is known a-priori based on
the compute service being used.

The RCM, γ : X ×Ω→ R yields the predicted mean cost,
µ and uncertainty σ for a given x and θ.

The conditional probability distribution for the predicted
cost, γ(θ | x′), can be derived from the posterior distribution
of γ. This conditional distribution is leveraged to determine



the optimal system parameters, θ′, for a given set of model
parameters x′, such that the predicted cost of evaluating f at x′
is minimal. To achieve this, we minimize the upper confidence
bound of γ(θ | x′).

θ′ = argmin
θ∈Ω

(µ(θ | x′) + λσ(θ | x′)) (9)

where λ is a tunable parameter that controls the trade-off
between minimizing the predicted cost and accounting for the
uncertainty associated with the cost prediction.

B. Resource Efficient BO

Let f : X × Ω → R2 be a function that maps model pa-
rameter space X and system parameter space Ω to evaluation
cost and function output. We aim to find x∗ ∈ X and θ∗ ∈ Ω
such that f(x∗,θ∗) ≤ f(x,θ)∀x ∈ X ,θ ∈ Ω

REBO begins by initializing two models: the surrogate
model which is a Gaussian Process, GPf : X → R and the
Resource Cost Model, γ : X × Ω → R. These models are
initialized with a set of initial observations of the objective
function f , typically obtained through a space-filling strategy,
such as Latin Hypercube Sampling. This strategy ensures
a diverse initial set of points, providing a suitable starting
point for the optimization process. Subsequently, an EI based
acquisition function, αEI : X → R determines the next set of
points that f should be evaluated on. It is crucial to note that
the points selected here are chosen solely based on maximizing
the expected improvement, without considering the associated
evaluation costs.

Following the selection of the new points by the αEI

acquisition function, a conditional probability distribution is
constructed from γ. This distribution maps the estimated
cost of evaluating f for the given set of model parameters
determined by αEI and all possible system parameters. By
minimizing the upper confidence bounds of γ conditioned on
the chosen model parameters, the set of system parameters
is obtained, on which f can be evaluated such that it incurs
the least cost. Once the set of model parameters and their
corresponding set of system parameters have been acquired,
they are used to evaluate the objective function f . With the
newly acquired observation, both the GPf and γ models
are updated to incorporate the additional information. This
update step involves re-estimating the GP hyperparameters and
updating the posterior distributions of the two models.

The REBO algorithm then checks for convergence crite-
ria, such as the allocated budget (e.g., number of function
evaluations or computational resources) being exhausted or a
satisfactory solution being found. If the convergence criteria
is not met, REBO iterates back to the step where a new set of
model parameters and system parameters are acquired using
the updated surrogate model and RCM.

This iterative process continues until the convergence crite-
ria are satisfied, hence leveraging surrogate model (GPf ) and
the the Resource Cost Model (γ) to navigate the optimization
manifold in a resource-efficient manner while maintaining the

quality of the optimization process. The key steps of this
process are summarized in Algorithm 1.

It is noteworthy that if the Resource Cost Model (γ) and
the associated two-step acquisition process are omitted, the
REBO algorithm becomes equivalent to a traditional Bayesian
Optimization algorithm.

IV. EXPERIMENTAL VALIDATION

A. Experimental Setup

We evaluate the performance of REBO using a test bench
consisting of both synthetic and real-world applications. The
synthetic test bench includes three 2d objective functions:
Ackley function (defined over [−32, 32]2), Rosenbrock func-
tion (defined over [−5, 10]2), and Matyas function (defined
over [−10, 10]2).

The real-world applications in our study focus on three
widely used Hyper Parameter Optimization (HPO) problems.
First, we consider an Artificial Neural Network (ANN) algo-
rithm, which we optimize by tuning three hyperparameters:
number of hidden layers (defined over [2, 10]), number of
nodes per hidden layer (defined over [10, 100]), and training
batch size (defined over [10, 100]). Next, we optimize a
Decision Tree algorithm, whose search space is defined by
three hyperparameters: maximum depth (defined over [1, 50]),
minimum number of samples required to split an internal node
(defined over [0.1, 0.9]), and number of features to consider
for the best split (defined over [0.1, 0.9]). Finally, we explore
a Random Forest algorithm, which is also characterized by
three hyperparameters: maximum depth (defined over [1, 50]),
minimum number of samples required to split a node (defined
over [0.1, 0.9]), and maximum number of leaf nodes (defined
over [1, 51]).

Each HPO problem is tested on three different datasets:
income [11], bean [1], and bank [15], resulting in 9 different
combinations of HPO problems. The income dataset predicts
whether a household’s income exceeds $50,000 based on the
1994 US Census database. The bean dataset classifies beans
into 7 different categories based on their features. The bank
dataset predicts if a client will subscribe to a term deposit
based on marketing campaigns of a Portuguese banking insti-
tution. These tests are also accompanied by the cost function
mentioned earlier.

To enable resource-efficient optimization, REBO’s search
space also consists of system parameters that define the
system configuration for each objective function evaluation.
We consider a 3d search space consisting of the number of
nodes (defined over [2, 32]), the number of CPU cores (defined
over [2, 10]), and the active memory per node (defined over
[4, 64]).

To execute the optimization process, a dollar cost must be
associated with each point in the search space that is evaluated.
Generally, this cost would be obtained by calculating the time
required to evaluate a point and the cost per unit time of
the system configuration on which it was evaluated. However,
in this paper, instead of measuring the actual cost, we use
a simulated cost function. This cost function follows the



Algorithm 1 REBO: Resource Efficient Bayesian Optimization

1: Sample n0 random points from X : x(1:n0)

2: Sample n0 random points from Ω: θ(1:n0)

3: Let the model and system parameters’ combined vector be X(1:n0) ← {x(1:n0) : θ(1:n0)}
4: Observe function evaluations, y(1:n0)

f and evaluation costs, y(1:n0)
c by evaluating f at X(1:n0)

5: Organize the observations into D
(1:n0)
f ← {(x(1:n0), y

(1:n0)
f )} and D

(1:n0)
c ← {(X(1:n0), y

(1:n0)
c )}

6: n← n0

7: while optimization stopping condition not met do
8: Update surrogate model, GPf with D

(1:n)
f to obtain µf (x) and σf (x)

9: Update RCM, γ with D
(1:n)
c

10: Initialize acquisition function αEI(x, (µf , σf ))
11: x(n+1) ← argmaxx∈X αEI(x) such that x(n+1) ̸∈ D1:n

f

12: Compute γ(θ | x(n+1)) to obtain µc(θ | x(n+1)) and σc(θ | x(n+1))
13: θ(n+1) ← argminθ∈Ω (µc + λσc)

14: X(n+1) ← {x(n+1) : θ(n+1)}
15: Observe y

(n+1)
f and y

(n+1)
c by evaluating the objective function f at X(n+1)

16: D
(1:n+1)
f ← D

(1:n)
f ∪ {(x(n+1), y

(n+1)
f )}

17: D
(1:n+1)
c ← D

(1:n)
c ∪ {(X(n+1), y

(n+1)
c )}

18: n← n+ 1
19: end while
20: return (x∗,θ∗) ∈ D

(1:n)
f such that f(x∗,θ∗) ≤ f(x,θ)∀x ∈ x(1:n),θ ∈ θ(1:n)
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Fig. 1. Optimization comparison on a 2d Ackley function. Left: Cumulative cost consumed by each algorithm. Right: Number of iterations it took for each
algorithm to converge. REBO costs the least and is fastest to reach the optimum.



TABLE I
AVERAGE COST OF OPTIMIZATION ON SYNTHETIC AND REAL-WORLD TASKS

EI EI EI EIpu EIpu EIpu CEI CEI CEI EI-cool EI-cool EI-cool REBO
Low Mid High Low Mid High Low Mid High Low Mid High

Ackley 0.149 0.582 109.792 0.496 0.605 34.157 0.219 0.547 66.982 0.205 0.426 70.014 0.084
Rosen 0.125 0.257 11.619 0.157 0.279 9.170 0.135 0.255 10.889 0.143 0.208 15.119 0.068
Matyas 0.094 0.146 20.099 0.093 0.159 19.028 0.108 17.677 19.260 0.090 0.140 20.911 0.062
ANN income 0.083 0.088 0.737 0.076 0.437 3.879 0.308 0.924 8.767 0.097 0.764 76.379 0.066
ANN bank 0.229 0.690 7.983 0.259 3.826 5.874 0.542 0.363 7.289 0.121 0.827 4.024 0.071
ANN bean 0.059 0.240 0.374 0.073 0.287 8.742 0.426 0.827 2.837 0.115 0.349 12.939 0.040
Decision Tree income 0.030 0.068 2.953 0.106 0.110 0.699 0.055 0.166 7.705 0.039 0.120 8.203 0.014
Decision Tree bank 0.090 0.083 2.030 0.023 0.086 6.132 0.030 0.084 4.715 5.777 0.071 0.028 0.024
Decision Tree bean 0.050 0.094 2.358 0.051 0.079 6.586 0.042 0.132 5.097 0.052 0.122 3.692 0.014
Random Forest income 0.045 0.041 0.796 0.054 0.064 3.090 0.062 0.054 2.366 0.031 0.096 1.154 0.008
Random Forest bank 0.038 0.027 0.645 0.028 0.048 5.396 0.017 0.042 2.009 0.023 0.048 2.440 0.006
Random Forest bean 0.035 0.041 1.156 0.030 0.084 5.339 0.045 0.089 3.045 0.032 0.123 2.406 0.007

TABLE II
AVERAGE NUMBER OF ITERATIONS NEEDED TO OPTIMIZE ON SYNTHETIC AND REAL-WORLD TASKS

EI EI EI EIpu EIpu EIpu CEI CEI CEI EI-cool EI-cool EI-cool REBO
Low Mid High Low Mid High Low Mid High Low Mid High

Ackley 35.60 35.60 35.60 40.50 39.50 38.20 36.90 37.15 36.50 37.60 38.60 38.90 35.60
Rosen 5.20 5.20 5.20 5.77 5.71 5.05 5.63 5.38 6.06 5.47 5.75 5.65 5.20
Matyas 23.57 23.57 23.57 23.40 25.20 22.00 25.70 20.50 21.70 22.50 22.40 24.20 23.57
ANN income 15.70 15.70 15.70 19.80 21.80 16.90 15.90 18.87 19.10 18.70 19.10 19.70 15.70
ANN bank 21.50 21.50 21.50 29.54 27.60 31.50 25.80 26.30 24.90 27.90 23.30 32.60 21.50
ANN bean 18.30 18.30 18.30 17.60 19.70 20.30 19.30 15.70 22.87 21.54 21.80 22.20 18.30
Decision Tree income 30.03 30.03 30.03 32.65 33.00 34.63 33.94 31.30 34.30 33.40 35.07 35.80 30.03
Decision Tree bank 19.19 19.19 19.19 23.81 25.90 24.36 23.87 25.43 23.25 22.72 23.30 20.14 19.19
Decision Tree bean 25.03 25.03 25.03 30.50 27.30 26.30 30.50 26.70 28.47 27.95 26.96 27.88 25.03
Random Forest income 19.93 19.93 19.93 24.36 20.73 21.10 23.60 21.50 22.90 23.20 23.00 24.17 19.93
Random Forest bank 11.76 11.76 11.76 15.63 11.37 13.45 13.42 12.84 13.15 15.59 12.73 14.20 11.76
Random Forest bean 18.83 18.83 18.83 18.90 20.20 22.50 19.40 19.80 22.20 21.95 21.48 19.27 18.83

same structure as eqn: 1, consisting of two components: a
time cost function and a unit cost function. The time cost
function is defined by (n1 − f1)

2 + (n2 − f2)
2 + n3, where

n1, n2, and n3 are the three system parameters, and f1 and
f2 are linear combinations of the different model parameters.
This formulation reflects the observation that different model
parameters corresponds to a different set of system parameters
that yield the optimum evaluation cost, which is consistent
with findings from previous works [16], [20], [26]. The second
component of the cost function is the per-unit-time cost
function, which is modeled after the pricing of AWS EC2 c6gn
compute instances [1]. By combining these two components,
the cost function provides a realistic estimate of the total
cost associated with evaluating the objective function under
different system configurations and model parameters.

We conduct a comparative analysis of REBO against state-
of-the-art baselines (EIpu, CEI and EI-cool) as well as stan-
dard Bayesian Optimization using Expected Improvement
(EI). Since these baseline methods do not consider the sys-
tem configuration, we conduct the optimization under three
different static system settings: a high system configuration
(highest per-unit-time price) with 32 nodes, 10 cores, and
64GB memory; a mid configuration (moderate per-unit-time
price) with 16 nodes, 6 cores, and 32GB memory; and a low
system configuration (lowest per-unit-time price) with 3 nodes,

1 core, and 2GB memory. We compare the performance of
these algorithms with REBO, which employs a dynamically
adjusting system configuration that adapts as it learns more
about the underlying distribution of the objective function.

Our implementation is based on the boTorch [4] and scikit-
learn [19] libraries. To ensure a fair comparison, all algorithms
across each benchmark employ the same kernels: a Matérn
kernel for the surrogate model Gaussian Process (GP) and
a Radial Basis Function (RBF) kernel for the RCM GP.
Furthermore, all algorithms start from an identical set of
initial points. The hyperparameters are tuned by optimizing
the maximum marginal log-likelihood. Each optimization is
repeated 100 times, and the reported results represent the
average performance across these runs.

B. Experimental Results

Our evaluation of REBO against the aforementioned algo-
rithms is based on two key criteria. First is the total cost
incurred in reaching the optimum. For the synthetic functions
reaching the optimum signifies reaching their respective global
minima/maxima and for HPO, it is defined as achieving a 10%
improvement in the prediction accuracy. Table I presents the
average cost of optimization over 100 replications, showing
that REBO outperforms EI, EIpu, CEI, and EI-Cool by a
significant margin.



The second criterion we use to evaluate is the quality of
optimization, which is quantified by the number of iterations
required to reach the optimum. Table II summarizes the
average number of iterations needed for each model to reach
the optimum condition, across 100 replications. Our findings
indicate that REBO reaches the optimum condition in fewer
iterations compared to the other methods when the optimum
lies in a high-cost region, while exhibiting comparable per-
formance when the optimum exists in a low-cost region. It is
worth noting that the number of iterations required for REBO
to reach the optimum is identical to that of EI, as REBO also
employs the Expected Improvement (EI) acquisition function.

We visualize the improvement that REBO offers by exam-
ining an individual optimization run of the 2d Ackley function
using REBO, EI, EIpu, CEI, and EI-cool across low, and mid
system configurations in Figure 1. We omit the high system
configuration from the plot due to its significantly higher
optimization cost, which makes it difficult to visualize on the
same scale as the other configurations. In Figure 1, we make
two key observations. First, REBO is able to optimize the
objective function in the least cost when compared to other
methods. This is attributed not only to the lesser number of
points being sampled to reach the optima but also to REBO’s
ability to dynamically select a system configuration at each
iteration that can evaluate the sampled point in the most cost-
effective manner. This is evident from the cumulative cost
plotted across each iteration. Second, we observe that REBO
maintains the same sample efficiency as EI by being able to
find the minima in the minimum number of iterations.

V. CONCLUSIONS

In the current era of machine learning, where model pa-
rameters range from a few hundred to billions, it has be-
come increasingly evident that simply scaling computational
resources is not the most cost-effective strategy for training
the models. Choosing the right type of resources is equally
crucial in optimizing the cost-efficiency of the training process,
which includes iterating over a large number of model hyper-
parameters. For very large machine learning models, a single
node often lacks the power to train these models quickly.
As a result, it is essential to distribute the training across
multiple nodes to meet the computational demand. However,
performance does not scale linearly with the number of nodes.
In some cases, spreading processes across many servers is
more effective, while in others, consolidating them on a
single server yields better results. Cloud and HPC platforms
enable such possibilities by offering a heterogeneous mix
of computing resources with varying performance and cost
profiles.

We argue that BO, which has emerged as an excellent
optimization method for black-box functions, needs to be
modified so that users can exploit the available resources on
cloud and HPC platforms effectively. The resource-efficient
formulation of the proposed REBO algorithm is a novel
strategy and the empirical results show that REBO provides

the same convergence guarantees as the original BO, while
providing significant cost benefits.
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